Positive Wigner Functions Render Classical Simulation of Quantum Computation Efficient
نویسندگان
چکیده
منابع مشابه
Positive Wigner functions render classical simulation of quantum computation efficient.
We show that quantum circuits where the initial state and all the following quantum operations can be represented by positive Wigner functions can be classically efficiently simulated. This is true both for continuous-variable as well as discrete variable systems in odd prime dimensions, two cases which will be treated on entirely the same footing. Noting the fact that Clifford and Gaussian ope...
متن کاملEfficient Classical Simulation of Measurements in Optical Quantum Information
We present conditions for the efficient simulation of a broad class of optical quantum circuits on a classical machine: this class includes unitary transformations, amplification, noise, and measurements. Various proposed schemes for universal quantum computation using optics are assessed against these conditions, and we consider the minimum resource requirements needed in any optical scheme to...
متن کاملEfficient classical simulation of the quantum Fourier transform
A number of elegant approaches have been developed for the identification of quantum circuits which can be efficiently simulated on a classical computer. Recently, these methods have been employed to demonstrate the classical simulability of the quantum Fourier transform (QFT). Here we show that one can demonstrate a number of simulability results for QFT circuits in a straightforward manner us...
متن کاملEfficient classical simulation of slightly entangled quantum computations.
We present a classical protocol to efficiently simulate any pure-state quantum computation that involves only a restricted amount of entanglement. More generally, we show how to classically simulate pure-state quantum computations on n qubits by using computational resources that grow linearly in n and exponentially in the amount of entanglement in the quantum computer. Our results imply that a...
متن کاملEfficient classical simulation of continuous variable quantum information processes.
We obtain sufficient conditions for the efficient simulation of a continuous variable quantum algorithm or process on a classical computer. The resulting theorem is an extension of the Gottesman-Knill theorem to continuous variable quantum information. For a collection of harmonic oscillators, any quantum process that begins with unentangled Gaussian states, performs only transformations genera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2012
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.109.230503